

NPN Transistor

This device is designed for high current, low impedance line driver applications. Sourced from Process 26.

Absolute Maximum Ratings TA = 25°C unless otherwise noted

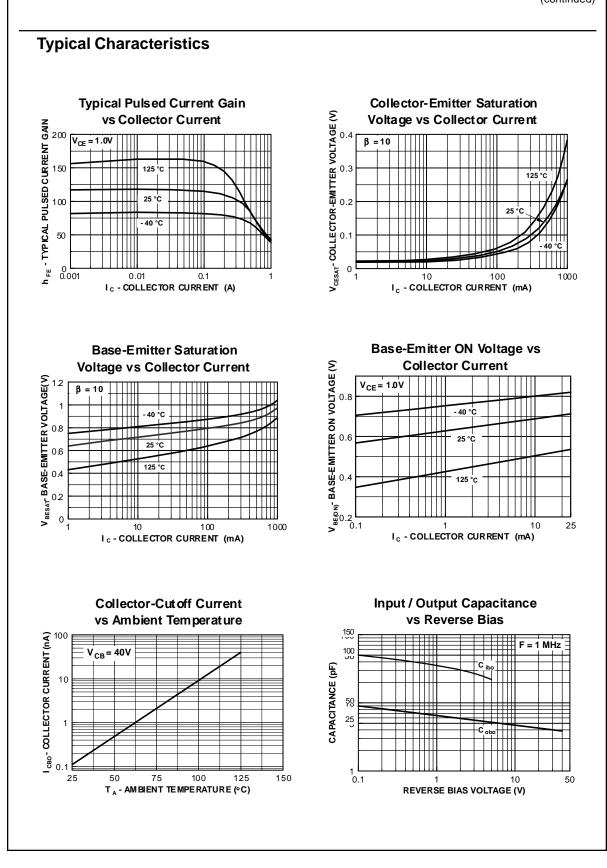
Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	60	V
V _{EBO}	Emitter-Base Voltage	6.0	V
I _C	Collector Current - Continuous	1.2	A
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

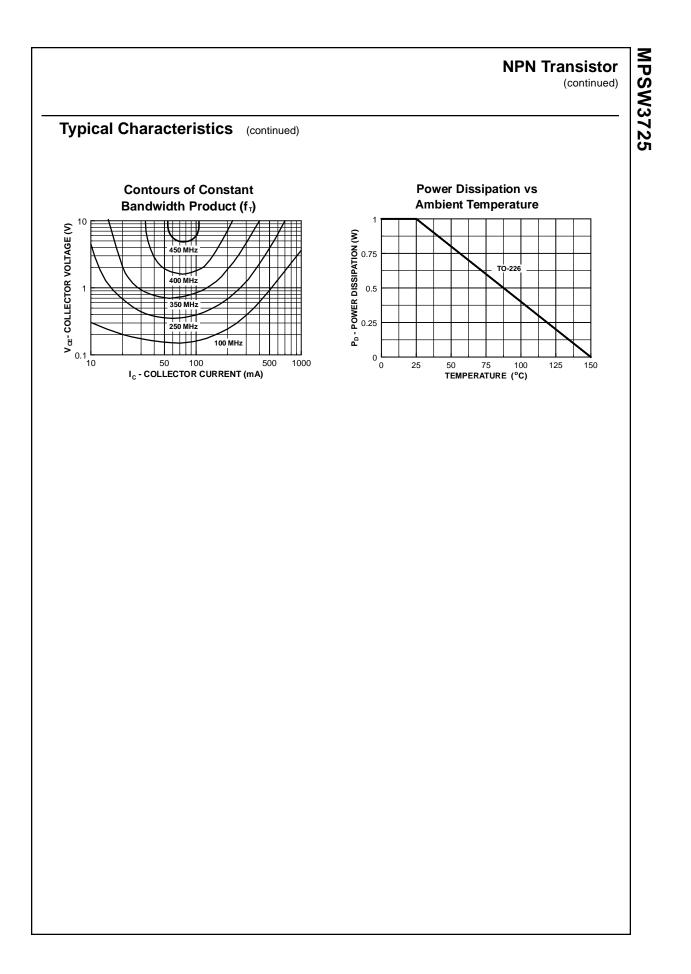
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES: 1) These ratings are based on a maximum junction temperature of 150 degrees C. 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

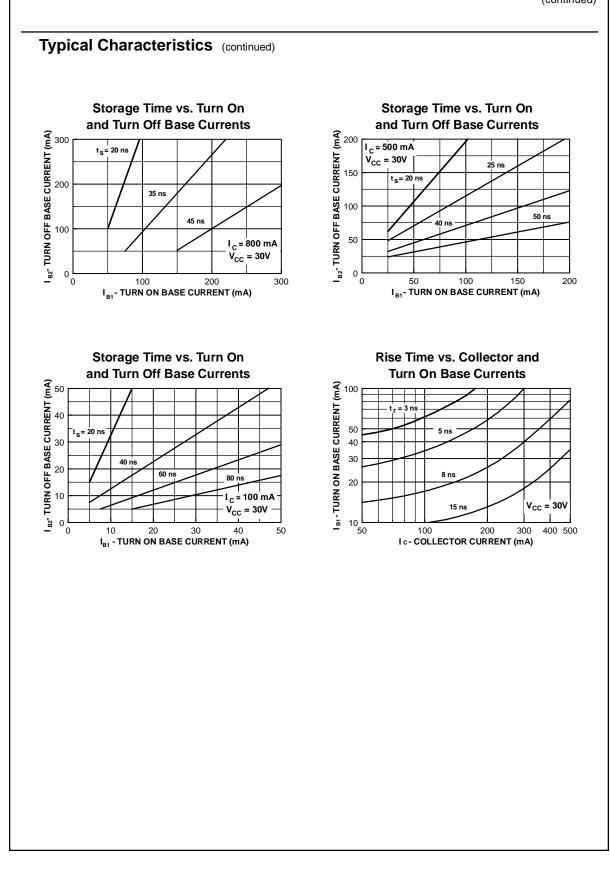
Thermal Characteristics TA = 25°C unless otherwise noted

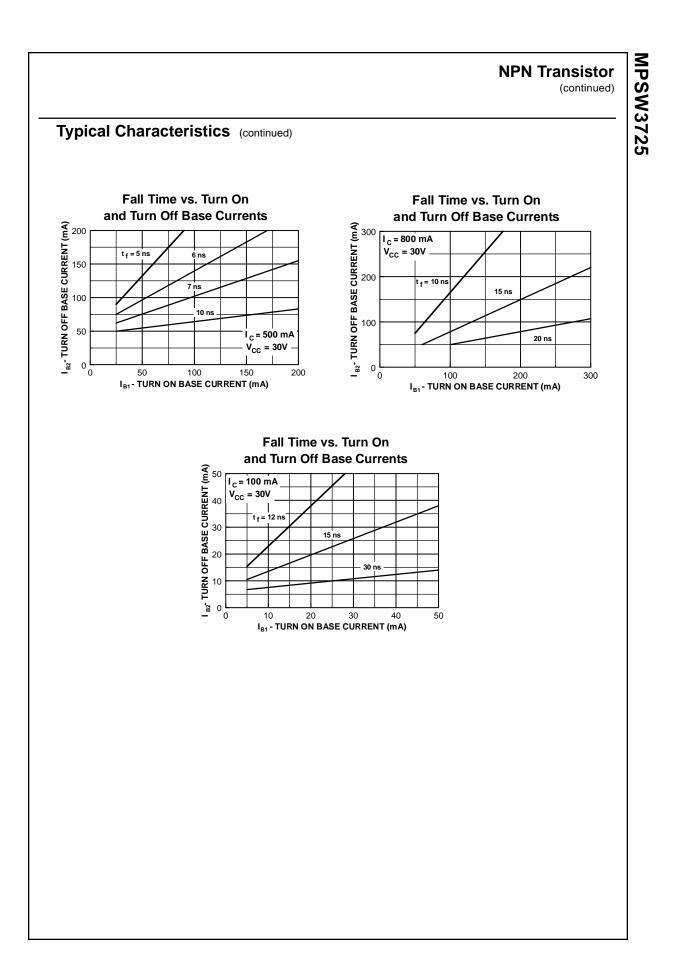
Symbol	Characteristic	Мах	Units
	-	MPSW3725	
PD	Total Device Dissipation	1.0	W
	Derate above 25°C	8.0	mW/∘C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125	°C/W
$R_{\theta J A}$	Thermal Resistance, Junction to Ambient	50	°C/W

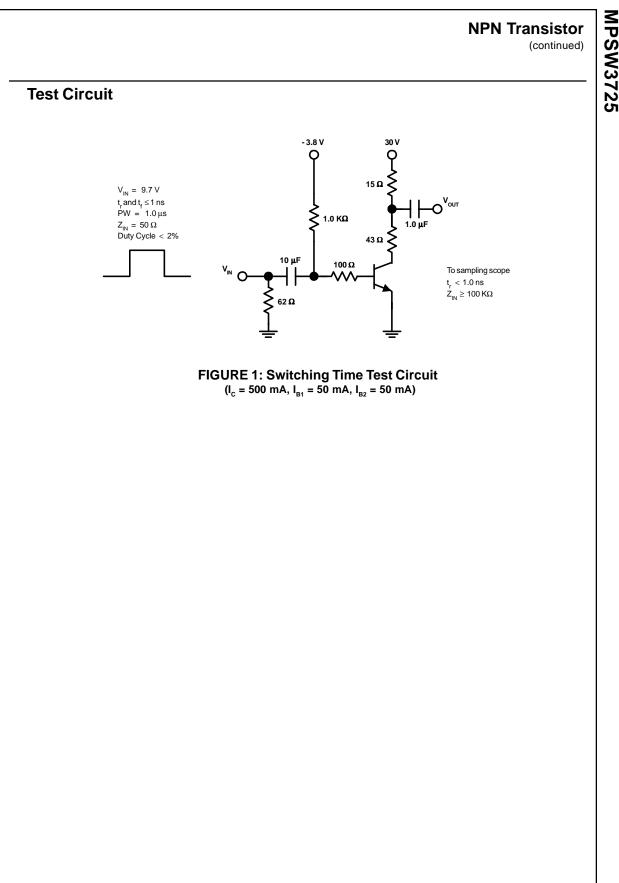

OFF CHARACTERISTICS $V_{(BR)CE0}$ Collector-Emitter Breakdown Ic = 10 mA, I _B = 0 40 V $V_{(BR)CES}$ Collector-Emitter Breakdown Ic = 10 µA, V _{BE} = 0 60 V $V_{(BR)CE0}$ Collector-Emitter Breakdown Voltage Ic = 10 µA, I _{CE} = 0 60 V $V_{(BR)CE0}$ Collector-Base Breakdown Voltage Ic = 10 µA, I _{CE} = 0 60 V $V_{(BR)CE0}$ Collector Cutoff Current VcB = 50 V, I _E = 0 60 10 $V_{(BR)CE0}$ Collector Cutoff Current VcB = 50 V, I _E = 0, T _A = 100°C 10 10 $V_{CB} = 50 V, IE = 0, TA = 10.V 60 10 10 10 10 ON CHARACTERISTICS* Ic = 10 mA, VCE = 1.0 V 30 10 10 10 V_{CE} = 50 ONA, V_{CE} = 1.0 V, I_{A} = -55°C 20 10 $	ansisto (continued	NPN Transis								
OFF CHARACTERISTICS V(BR)CED Collector-Emitter Breakdown Ic = 10 mA, I _B = 0 40 0 V(BR)CES Collector-Emitter Breakdown Ic = 10 μ A, V _{BE} = 0 60 0 V(BR)CED Collector-Emitter Breakdown Voltage Ic = 10 μ A, V _{BE} = 0 60 0 V(BR)CED Collector-Base Breakdown Voltage Ic = 10 μ A, Ic = 0 6.0 0 V(BR)CED Collector Cutoff Current VcB = 50 V, IE = 0 60 10 VCB Collector Cutoff Current VcB = 50 V, IE = 0, TA = 100°C 10 VCB Collector Cutoff Current VcB = 1.0 V 30 10 VCB = 50 V, IE = 0, TA = 100°C 30 18 10 10 VCB = 50 V, IE = 0, TA = 100°C 30 10 10 10 VCB = 50 V, IE = 0, TA = 10 V 30 10 10 10 VCB = 50 V, IE = 0, TA = 100°C 30 10 10 10 10 VCB = 50 V, IE = 0, TA = 10 MA, VCE = 1.0 V 30 10 10 10 10 10 10										
Voltage* Voltage Voltage O O O O V(BR)CES Collector-Emitter Breakdown Voltage I _C = 10 μ A, V _{BE} = 0 60 V(BR)CEO Collector-Emitter Breakdown Voltage I _L = 10 μ A, I _C = 0 60 V(BR)CEO Collector-Base Breakdown Voltage I _L = 10 μ A, I _C = 0 60 V(BR)CEO Collector-Cutoff Current V _{CB} = 50 V, I _E = 0 60 100 V _{CBD} Collector Cutoff Current V _{CB} = 50 V, I _E = 0, T _A = 100°C 100	x Units	Max	Тур	Min	Test Conditions	Parameter	Symbol			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						RACTERISTICS	OFF CHAF			
	V			40	$I_{\rm C} = 10$ mA, $I_{\rm B} = 0$	Collector-Emitter Breakdown				
	V			60	$I_{C} = 10 \ \mu A, \ V_{BE} = 0$	Collector-Emitter Breakdown	V _{(BR)CES}			
	V			60	$I_{\rm C} = 100 \ \mu \text{A}, \ I_{\rm CE} = 0$	Collector-Base Breakdown Voltage	V _{(BR)CBO}			
V _{CB} = 50 V, I _E = 0, T _A = 100°C 10 ON CHARACTERISTICS* I _C = 10 mA, V _{CE} = 1.0 V 30 18 h _{FE} DC Current Gain I _C = 10 mA, V _{CE} = 1.0 V 60 18 I _C = 100 mA, V _{CE} = 1.0 V, T _A = -55°C 30 16 100 mA, V _{CE} = 1.0 V 40 I _C = 500 mA, V _{CE} = 1.0 V, T _A = -55°C 20 12 500 mA, V _{CE} = 1.0 V 40 I _C = 500 mA, V _{CE} = 1.0 V, T _A = -55°C 20 12 500 mA, V _{CE} = 1.0 V 20 12 V _{CE} (sat) Collector-Emitter Saturation Voltage I _C = 10 mA, I _B = 1.0 mA 0.2 25 V _{CE} (sat) Collector-Emitter Saturation Voltage I _C = 10 mA, I _B = 10 mA 0.2 I _C = 300 mA, I _B = 30 mA 0.3 0.4 0.5 I _C = 10 A, I _B = 100 mA 0.3 0.4 0.5 I _C = 10 A, I _B = 10 mA 0.3 0.4 0.5 0.5 V _{BE} (sat) Base-Emitter Saturation Voltage I _C = 10 mA, I _B = 10 mA 0.3 0.4 I _C = 100 mA, I _B = 10 mA 0.3 0.4 0.3 0.4 0.7	V			6.0	$I_{\rm E} = 10 \ \mu A, I_{\rm C} = 0$	Emitter-Base Breakdown Voltage	V _{(BR)EBO}			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	100 10			, -	Collector Cutoff Current	I _{CBO}			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		180		30	I_{C} =100mA, V_{CE} =1.0V, T_{A} =-55°C I_{C} = 300 mA, V_{CE} = 1.0 V					
$V_{CE(sat)} = \begin{bmatrix} c = 100 \text{ mA}, V_{CE} = 1.0 \text{ V} & 60 \\ I_{C} = 100 \text{ mA}, V_{CE} = 1.0 \text{ V} & 40 \\ I_{C} = 300 \text{ mA}, V_{CE} = 1.0 \text{ V} & 40 \\ I_{C} = 300 \text{ mA}, V_{CE} = 1.0 \text{ V} & 40 \\ I_{C} = 500 \text{ mA}, V_{CE} = 1.0 \text{ V} & 35 \\ I_{C} = 500 \text{ mA}, V_{CE} = 1.0 \text{ V} & 20 \\ I_{C} = 800 \text{ mA}, V_{CE} = 2.0 \text{ V} & 25 \\ \hline \\ V_{CE(sat)} = \begin{bmatrix} c = 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 30 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 30 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = $						ACTERISTICS*	ON CHAR			
$V_{CE(sat)} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$					I _C =100mA,V _{CE} =1.0V,T _A =-55°C					
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				-						
$V_{CE(sat)} = \begin{bmatrix} I_{C} = 800 \text{ mA}, V_{CE} = 2.0 \text{ V} & 20 \\ I_{C} = 1.0 \text{ A}, V_{CE} = 5.0 \text{ V} & 25 \end{bmatrix}$ $V_{CE(sat)} = \begin{bmatrix} Collector-Emitter Saturation Voltage \\ I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{B} = 10 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 30 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 30 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 30 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 30 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 1.0 \text{ A}, I_{C} = 100 \text{ mA} \\ I_{C} = 1.0 \text{ A}, I_{C} = 100 \text{ mA} \\ I_{C} = 1.0 \text{ A}, I_{C} = 100 \text{ mA} \\ I_{C} = 1.0 \text{ A}, I_{C} = 100 \text$										
$V_{CE(sat)} \begin{bmatrix} Collector-Emitter Saturation Voltage \\ I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{B} = 10 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 30 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 1.0 \text{ mA} \\ I_{C} = 1.0 \text{ mA} \\ I_{C} = 100 \text{ mA} \\ I_{C} =$				-						
$V_{BE(sat)} = \begin{bmatrix} I_{C} = 100 \text{ mA}, I_{B} = 10 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 30 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 30 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 30 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 30 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 30 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 30 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 30 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 100 \text{ mA} \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} \\ I_{C} = 1.0 \text{ mA}, I_{C} = 1.0 \text{ mA} \\ I_{C} =$				25						
$V_{BE(sat)} = Base-Emitter Saturation Voltage = I_{C} = 300 mA, I_{B} = 30 mA = 0.4 \\ I_{C} = 500 mA, I_{B} = 50 mA = 0.5 \\ I_{C} = 800 mA, I_{B} = 80 mA = 0.9 \\ I_{C} = 1.0 A, I_{B} = 100 mA = 0.9 \\ I_{C} = 100 mA, I_{B} = 1.0 mA = 0.7 \\ I_{C} = 100 mA, I_{B} = 10 mA = 0.8 \\ I_{C} = 300 mA, I_{B} = 30 mA = 0.7 \\ I_{C} = 100 mA, I_{B} = 10 mA = 0.8 \\ I_{C} = 300 mA, I_{B} = 30 mA = 0.7 \\ I_{C} = 500 mA, I_{B} = 30 mA = 0.7 \\ I_{C} = 100 mA, I_{B} = 10 mA = 0.8 \\ I_{C} = 100 mA, I_{B} = 10 mA = 0.8 \\ I_{C} = 100 mA, I_{B} = 10 mA = 0.8 \\ I_{C} = 100 mA, I_{B} = 100 mA = 0.8 \\ I_{C} = 100 mA, I_{B} = 100 mA = 0.8 \\ I_{C} = 1.0 A, I_{C} = 0.8 \\ I_{C} = 1.0 A, I_{C} = 0.8 \\ I_{C} = 0$	-	0.25				Collector-Emitter Saturation Voltage	V _{CE(sat)}			
$V_{BE(sat)} = Base-Emitter Saturation Voltage = I_{1}^{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} = 0.5 \\ I_{C} = 800 \text{ mA}, I_{B} = 80 \text{ mA} = 100 \text{ mA} = 0.9 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} = 0.9 \\ I_{C} = 100 \text{ mA}, I_{B} = 10 \text{ mA} = 0.7 \\ I_{C} = 100 \text{ mA}, I_{B} = 10 \text{ mA} = 0.8 \\ I_{C} = 300 \text{ mA}, I_{B} = 30 \text{ mA} = 0.7 \\ I_{C} = 300 \text{ mA}, I_{B} = 30 \text{ mA} = 0.7 \\ I_{C} = 300 \text{ mA}, I_{B} = 30 \text{ mA} = 0.7 \\ I_{C} = 300 \text{ mA}, I_{B} = 30 \text{ mA} = 0.7 \\ I_{C} = 300 \text{ mA}, I_{B} = 30 \text{ mA} = 0.7 \\ I_{C} = 100 \text{ mA}, I_{B} = 100 \text{ mA} = 0.7 \\ I_{C} = 100 \text{ mA}, I_{B} = 100 \text{ mA} = 0.7 \\ I_{C} = 100 \text{ mA}, I_{B} = 100 \text{ mA} = 0.7 \\ I_{C} = 100 \text{ mA}, I_{B} = 100 \text{ mA} = 0.7 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} = 0.7 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} = 0.7 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} = 0.7 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} = 0.7 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} = 0.7 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} = 0.7 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} = 0.7 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} = 0.7 \\ I_{C} = 0.7 \text{ mA}$										
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		0.4								
$\begin{array}{c c} I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} & 0.9 \\ \hline I_{C} = 1.0 \text{ A}, I_{B} = 1.0 \text{ mA} & 0.9 \\ \hline V_{BE(sat)} & Base-Emitter Saturation Voltage & I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA} & 0.7 \\ I_{C} = 100 \text{ mA}, I_{B} = 10 \text{ mA} & 0.8 \\ I_{C} = 300 \text{ mA}, I_{B} = 30 \text{ mA} & 1.2 \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} & 1.2 \\ I_{C} = 800 \text{ mA}, I_{B} = 80 \text{ mA} & 1.2 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} & 1.2 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} & 1.2 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} & 1.2 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} & 1.2 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} & 1.2 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} & 1.2 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} & 1.2 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} & 1.2 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} & 1.2 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} & 1.2 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} & 1.2 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} & 1.2 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} & 1.2 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} & 1.2 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} & 1.2 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} & 1.2 \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} & 1.2 \\ I_{C} = 1.0 \text{ A}, I_{C} = 1.0 \text{ A}, I_{C} = 1.0 \text{ A} \\ I_{C} = 1.0 \text{ A}, I_{C} = 1.0 \text{ A} & 1.2 \\ I_{C} = 1.0 \text{ A}, I_{C} = 1.0 \text{ A} & 1.2 \\ I_{C} = 1.0 \text{ A} & I_{C} = 1.0 \text{ A} & I_{C} = 1.0 \text{ A} \\ I_{C} = 1.0 \text{ A} & I_{C} = 1.0 \text{ A} & I_{C} = 1.0 \text{ A} & I_{C} = 1.0 \text{ A} \\ I_{C} = 1.0 \text{ A} & I_{C} = 1.0 \text$		0.8								
$ V_{BE(sat)} \\ Base-Emitter Saturation Voltage \\ Base-Emitter Saturation Voltage \\ I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{B} = 10 \text{ mA} \\ I_{C} = 300 \text{ mA}, I_{B} = 30 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 800 \text{ mA}, I_{B} = 80 \text{ mA} \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} \\ I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA} \\ I_{C} = 1.0 \text{ mA} \\ I$		0.95								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6 V	0.76				Base-Emitter Saturation Voltage	V _{BE(sat)}			
$I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA}$ $I_{C} = 800 \text{ mA}, I_{B} = 80 \text{ mA}$ $I_{C} = 1.0 \text{ A}, I_{B} = 100 \text{ mA}$ 1.1 SMALL SIGNAL CHARACTERISTICS	6 V	0.86			$I_{\rm C} = 100 \text{ mA}, I_{\rm B} = 10 \text{ mA}$		()			
I _C = 800 mA, I _B = 80 mA 1.5 I _C = 1.0 A, I _B = 100 mA 1.5 SMALL SIGNAL CHARACTERISTICS 1.5		1.1								
I _C = 1.0 A, I _B = 100 mA 1.3 SMALL SIGNAL CHARACTERISTICS 1.3		1.2			-					
SMALL SIGNAL CHARACTERISTICS		1.5								
	7 V	1.7			$I_{\rm C} = 1.0$ A, $I_{\rm B} = 100$ mA					
T_T Current Gain - Bandwidth Product $I_C = 50$ mA, $V_{CE} = 10$ V, 250	L			050						
f = 100 MHz	MHz			250	f = 100 MHz					
f = 1.0 MHz	P.	25			f = 1.0 MHz		C _{obo}			
C _{ibo} Input Capacitance $V_{EB} = 0.5 V, I_C = 0,$ 100 f = 1.0 MHz	D pF	100				Input Capacitance	Cibo			


SWITCHING CHARACTERISTICS

t _{on}	Turn-on Time	$V_{CC} = 30 \text{ V}, \text{ V}_{BE} = 3.8 \text{ V},$	22	ns
t _d	Delay Time	I _C = 500 mA, I _{B1} = 50 mA	10	ns
tr	Rise Time		12	ns
toff	Turn-off Time	$V_{CC} = 30 \text{ V}, \text{ I}_{C} = 500 \text{mA}$	250	ns
ts	Storage Time	$I_{B1} = I_{B2} = 50 \text{ mA}$	235	ns
t _f	Fall Time		15	ns


*Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 1.0%


NPN Transistor (continued)



NPN Transistor (continued)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DOME™ E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series[™] FAST[®]

FASTr™ GlobalOptoisolator™ GTO™ HiSeC™ **ISOPLANAR™** MICROWIRE™ OPTOLOGIC™ **OPTOPLANAR™** PACMAN™ POP™

PowerTrench[®] QFET™ QS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER® SMART START™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8

SyncFET™ TinyLogic™ UHC™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	1	Rev G